
Flattening and Simulation of Asynchronous
Divisionless P Systems with Active Membranes

Alberto Leporati1, Luca Manzoni2, and Antonio E. Porreca1

1 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{leporati,porreca}@disco.unimib.it

2 Laboratoire i3S, Université Nice Sophia Antipolis,
CS 40121 – 06903 Sophia Antipolis CEDEX, France

luca.manzoni@i3s.unice.fr

Abstract. We prove that asynchronous P systems with active mem-
branes without division rules can be simulated by single-membrane tran-
sition P systems using cooperative rules, even if the synchronisation
mechanisms provided by electrical charges and membrane dissolution
are exploited. In turn, the latter systems can be simulated by means of
place/transition Petri nets, and hence all these models are computation-
ally weaker than Turing machines.

1 Introduction

P systems with active membranes [10] are parallel computation devices inspired
by the structure and functioning of biological cells. A tree-like hierarchical struc-
ture of membranes divides the space into regions, where multisets of objects
(representing chemical substances) are located. The systems evolve by means of
rules rewriting or moving objects, and possibly changing the membrane struc-
ture itself (by dissolving or dividing membranes) or the state of the membranes
(by changing their electrical charge).

Under the maximally parallel updating policy, whereby all components of
the system that can evolve concurrently during a given computation step are
required to do so, these devices are known to be computationally universal.
Alternative updating policies have also been investigated. In particular, asyn-
chronous P systems with active membranes [7], where any, not necessarily max-
imal, number of non-conflicting rules may be applied in each computation step,
have been proved able to simulate partially blind register machines [8], computa-
tion devices equivalent under certain acceptance conditions to place/transition
Petri nets and vector addition systems [11]. This simulation only requires object
evolution (rewriting) rules and communication rules (moving objects between
regions).

In an effort to further characterise the effect of asynchronicity on the compu-
tational power of P systems, we prove that asynchronous P systems with active
membranes without dissolution can be flattened if we allow the use of cooperative

rules, obtaining a system that can be easily simulated by place/transition Petri
nets, and as such they are not computationally equivalent to Turing machines:
indeed, the reachability of configurations and the deadlock-freeness (i.e., the halt-
ing problem) of Petri nets are decidable [2]. This holds even when membrane
dissolution, which provides an additional synchronisation mechanism (besides
electrical charges) whereby all objects are released simultaneously from the dis-
solving membrane, is employed by the P system being simulated. Unfortunately,
this result does not seem to immediately imply the equivalence with partially
blind register machines, as the notion of acceptance for Petri nets employed here
is by halting and not by placing a token into a “final” place [8].

The paper is organised as follows: in Section 2 we recall the relevant defi-
nitions of (divisionless) P systems with active membranes and place/transition
Petri nets; in Section 3 we prove that asynchronous P systems with active mem-
branes are computationally equivalent to their sequential version, where a single
rule is applied during each computation step; in Section 4 we show that sequen-
tial P systems with dissolution rules can be simulated by sequential transition
P systems with cooperative rules having only one membrane; finally, in Section 5
we show how sequential single-membrane transition P systems using cooperative
rules can be simulated by Petri nets. Section 6 contains our conclusions and some
open problems.

2 Definitions

We first recall the definition of P systems with active membranes and its various
operating modes.

Definition 1. A P system with active membranes of initial degree d ≥ 1 is a
tuple Π = (Γ,Λ, µ, wh1

, . . . , whd
, R), where:

– Γ is an alphabet, i.e., a finite nonempty set of objects;
– Λ is a finite set of labels for the membranes;
– µ is a membrane structure (i.e., a rooted unordered tree) consisting of d

membranes injectively labelled by elements of Λ;
– wh1

, . . . , whd
, with h1, . . . , hd ∈ Λ, are strings over Γ , describing the initial

multisets of objects located in the d regions of µ;
– R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge, which can be either neutral (0), positive (+) or nega-
tive (−) and is always neutral before the beginning of the computation.

The following four kinds of rules are employed in this paper.

– Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

– Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the charge of h is changed
to β.

– Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β.

– Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the membrane h is dissolved and
its contents are released in the surrounding region unaltered, except that an
occurrence of a becomes b.

We recall that the most general form of P systems with active membranes [10]
also includes membrane division rules, which duplicate a membrane and its con-
tents; however, these rules are not used in this paper.

Each instantaneous configuration of a P system with active membranes is
described by the current membrane structure, including the electrical charges,
together with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

– Each object and membrane can be subject to at most one rule per step,
except for object evolution rules (inside each membrane several evolution
rules having the same left-hand side, or the same evolution rule can be
applied simultaneously; this includes the application of the same rule with
multiplicity).

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

– In each computation step, all the chosen rules are applied simultaneously
(in an atomic way). However, in order to clarify the operational semantics,
each computation step is conventionally described as a sequence of micro-
steps as follows. First, all evolution rules are applied inside the elementary
membranes, followed by all communication and dissolution rules involving
the membranes themselves; this process is then repeated to the membranes
containing them, and so on towards the root (outermost membrane). In
other words, the membranes evolve only after their internal configuration
has been updated. For instance, before a membrane dissolution occurs, all
chosen object evolution rules must be applied inside it; this way, the objects
that are released outside during the dissolution are already the final ones.

– The outermost membrane cannot be dissolved, and any object sent out from
it cannot re-enter the system again.

In the maximally parallel mode, the multiset of rules to be applied at each step
must be maximal, in the sense that no further rule can be added without creating

conflicts. In the asynchronous mode, any nonempty multiset of applicable rules
can be chosen. Finally, in the sequential mode, exactly one rule per computation
step is applied. In the following, only the latter two modes will be considered.

A halting computation of the P system Π is a finite sequence of configu-
rations C = (C0, . . . , Cn), where C0 is the initial configuration, every Ci+1 is
reachable from Ci via a single computation step, and no rule can be applied
in Cn. A non-halting computation C = (Ci : i ∈ N) consists of infinitely many
configurations, again starting from the initial one and generated by successive
computation steps, where the applicable rules are never exhausted.

The other model of computation we will employ is Petri nets. In particular,
with this term we denote place/transition Petri nets with weighted arcs, self-
loops and places of unbounded capacity [4]. A Petri net N is a triple (P, T, F)
where P is the set of places, T the set of transitions (disjoint from P) and F ⊆
(P×T)∪(T×P) is the flow relation. The arcs are weighted by a function w : F →
(N−{0}). A marking (i.e., a configuration) is a function M : P → N. Given two
markings M , M ′ of N and a transition t ∈ T we say that M ′ is reachable from
M via the firing of t, in symbols M →t M

′, if and only if:

– for all places p ∈ P , if (p, t) ∈ F and (t, p) /∈ F then M(p) ≥ w(p, t)
and M ′(p) =M(p)− w(p, t);

– for all p ∈ P , if (t, p) ∈ F and (p, t) /∈ F then M ′(p) =M(p) + w(t, p);
– for all p ∈ P , if both (p, t) ∈ F and (t, p) ∈ F then M(p) ≥ w(p, t)

and M ′(p) =M(p)− w(p, t) + w(t, p).

Petri nets are nondeterministic devices, hence multiple markings may be reach-
able from a given configuration. We call halting computation a sequence of mark-
ings (M0, . . .Mn) where M0 →t1 M1 →t2 · · · →tn Mn for some t1, . . . , tn, and
no transition may fire in Mn. Several problems related to the reachability of
markings and halting configurations (or deadlocks) are decidable [2].

3 Asynchronicity and Sequentiality

In this section we show how it is possible to construct, for every asynchronous
P system with active membranes, a sequential version that is equivalent to the
original one, in the sense that each asynchronous step where more than one rule
is applied can be substituted by a sequence of asynchronous steps where the
rules are reordered and applied one at a time.

Proposition 1. Let Π be a P system with active membranes using object evo-
lution, communication, and dissolution rules. Then, the asynchronous and the
sequential updating policies of Π are equivalent in the following sense: for each
asynchronous (resp., sequential) computation step C → D there exists a series of
sequential (resp., asynchronous) steps C = C0 → · · · → Cn = D for some n ∈ N.

Proof. Every asynchronous computation step C → D consists in the application
of a finite multiset of rules {e1, . . . , ep, c1, . . . , cq, d1, . . . , dr}, where e1, . . . , ep

are object evolution rules, c1, . . . , cq are communication rules (either send-in or
send-out), and d1, . . . , dr are dissolution rules.

Since evolution rules do not change any charge nor the membrane structure
itself, the computation step C → D can be decomposed into two asynchronous
computation steps C → E → D, where the step C → E consists in the applica-
tion of the evolution rules {e1, . . . , ep}, and the step E → D in the application
of the remaining rules {c1, . . . , cq, d1, . . . , dr}. Notice that in E there still exist
enough objects to apply these communication and dissolution rules, since by
hypothesis C → D is a valid computation step.

Furthermore, notice how there is no conflict between object evolution rules
(once they have been assigned to the objects they transform). Therefore, the
application of the rules {e1, . . . , ep} can be implemented as a series of sequential
steps C = C0 → · · · → Cp = E .

Each membrane can be subject to at most a single rule of communication or
dissolution type in the computation step C → D; hence, applying one of these
rules does not interfere with any other. Thus, these rules can also be serialised
into sequential computation steps E → Cp+1 → · · · → Cp+q+r = D. Once again,
all rules remain applicable since they were in the original computation step.

By letting n = p+ q+ r, the first half of the proposition follows. The second
part is due to the fact that every sequential computation step is already an
asynchronous computation step. ut

4 Single-Membrane Transition P Systems

In this section we recall the notion of transition P system, imposing as an addi-
tional constraint that the system has only one membrane. For a description of
a general framework in which these systems can be described see [6]. As proved
in [5], these systems are not universal; indeed, a simple simulation by means
of Petri nets, inspired by [3], is provided in the next section. Our simulation
involves a flattening of the membrane structure and the use of cooperative rules;
the first simulation of this type was presented in [1] and, in fact, our construc-
tion is similar. Unlike that construction, however, the semantics that we use is
sequential and we do not include promoters and inhibitors.

Definition 2. A single-membrane transition P system is a structure

Π = (Γ,w,R)

where Γ is a finite alphabet, w is a multiset of elements representing the initial
state of the system, and R is a set of cooperative rules in the form v → w where
v and w are multisets of objects of Γ .

Notice that the definition is a simplified version of the original definition of
transition P systems [9], since specifying the membrane structure is not needed.
We can now show that single-membrane transition P systems are equivalent to
divisionless P systems with active membranes when operating under the sequen-
tial semantics.

Let Π = (Γ,Λ, µ, wh1
, . . . , whd

, R) be a P system with active membranes and
C a configuration of Π. The flattened encoding of C is the multiset E(C) over
(Γ ∪ {−, 0,+})× Λ defined as follows:

1. If there are n copies of the object a contained in a membrane h in C, then
E(C) contains n copies of the element (a, h).

2. If a membrane h has charge c, then the object (c, h) is in E(C).

It is easy to see that, for a fixed Π, the encoding function is a bijection between
the configurations ofΠ and its image, that is, the function E is invertible. Hence,
for any multiset A that is the encoding of some configuration, the decoding is
uniquely identified, i.e., for any configuration C, E−1(E(C)) = C.

Proposition 2. Let Π = (Γ,Λ, µ, wh1
, . . . , whd

, R) be a P system with active
membranes working in the sequential mode and using object evolution, commu-
nication, and dissolution rules, with initial configuration C0. Then, there exists
a single-membrane transition P system Π ′ =

(
(Γ ∪ {−, 0,+} ∪ {•})× Λ, v,R′

)
,

for some initial multiset v, working in the sequential mode, such that:

(i) If C = (C0, C1, . . . , Cm) is a halting computation of Π, then there exists a
halting computation D = (E(C0),D1, . . . ,Dn) of Π ′ such that Dn is the
union of E(Cm) and the set of all the elements in the form (•, h) where h
is a membrane that has been dissolved in C.

(ii) If D = (E(C0),D1, . . . ,Dn) is a halting computation of Π ′, then there
exists a halting computation C = (C0, C1, . . . , Cm) of Π such that Dn can
be written as the union of the set of elements in the form (•, h), where h
is a membrane that was dissolved in C, and the set E(Cm).

(iii) Π admits a non-halting computation (C0, C1, . . .) if and only if Π ′ admits
a non-halting computation (E(C0),D1, . . .).

Proof. The main idea is to replace every dissolution rule of a membrane h in R
with a cooperative rule such that an object in the form (•, h) is generated and
all the objects in the form (a, h) are rewritten to (a, h′), where h′ is the lowest
ancestor of h in µ that has not been dissolved.

Let [a]αh1
→ b be a dissolution rule in R. Then, R′ contains the following

cooperative rules:

(a, h1)(α, h1)→ (b, h1)(•, h1). (1)

The objects that have h1 as the second component are then rewritten by means
of the following rules:

(a, h1)(•, h1)→ (a, h2)(•, h1) (2)

where h2 is the parent membrane of h1 in µ. Notice that, if (•, h2) exists, then
membrane h2 has been dissolved during a previous computation step; this means
that there exists another rule of type (2) rewriting all the objects having h2 as
the second component. This process continues as long as there are objects with

the label of a dissolved membrane as their second component (excluding the ones
having • as the first component).

An object evolution rule [a→ w]αh is simulated by the following cooperative
rule:

(a, h)(α, h)→ (w1, h) . . . (wn, h)(α, h). (3)

A send-out communication rule [a]αh1
→ []βh1

b is replaced by the following rules:

(a, h1)(α, h1)→ (b, h2)(β, h1) (4)

where h2 is the parent membrane of h1 in µ. As mentioned before, if (•, h2)
exists, then a rule of type (2) will subsequently rewrite (b, h2).

Finally, a send-in communication rule a []αh1
→ [b]βh1

is simulated as follows.
Let (hn, hn−1, . . . , h2, h1) be a sequence of nested membranes surrounding h1,
i.e., a descending path in the membrane tree µ. For every such sequence, we add
the following rules to R′:

(•, hn−1) · · · (•, h2)(α, h1)(a, hn)→ (•, hn−1) · · · (•, h2)(β, h1)(b, h1). (5)

These rules rewrite the object (a, hn) into (b, h1) if in Π all the membranes
between hn and h1 have been dissolved. Observe that the number of descending
paths leading to h1 is bounded above by the depth of µ.

Notice how every rule of R′ is exactly of one type among (1)–(5); in particular,
given a rule in R′ of type (1), (3), (4), or (5), it always possible to reconstruct
the original rule in R.

Each computation step of Π consisting in the application of an evolution or
send-in communication rule is simulated by a single computation step of Π ′ by
means of a rule of type (3) or (5), respectively.

The dissolution of a membrane h1 in Π requires a variable number of steps
of Π ′: first, a rule of type (1) is applied, then each object in the form (a, h1)
must be rewritten, by using rules of type (2), in order to obtain an object in
the form (a, hn), where hn is the lowest ancestor membrane of h1 that has not
been dissolved in the original system. The exact number of steps depends on the
number of objects located inside h1 and the number of membranes that have
been dissolved. The reasoning is analogous for send-out communication rules,
simulated by means of rules of type (4) and (2).

Part (i) of the proposition directly follows from the semantics of the above
cooperative rules.

Now let D = (D0 = E(C0),D1, . . . ,Dn) be a halting computation of Π ′.
Then there exists a sequence of rules r = (r1, . . . , rn) in R′ such that

D0 →r1 D1 →r2 · · · →rn−1
Dn−1 →rn Dn

where the notation X →r Y indicates that configuration Y is reached from X
by applying the rule r. Let f : N→ N be defined as

f(t) =
∣∣{ri : 1 ≤ i ≤ t and ri is not of type (2)}

∣∣.

We claim that there exists a sequence of rules s = (s1, . . . , sm) such that the
computation C = (C0, . . . , Cm) of Π generated by applying the rules of s, i.e.,

C0 →s1 C1 →s2 · · · →sm−1
Cm−1 →sm Cm

has the following property P (t) for each t ∈ {0, . . . , n}:

For all h ∈ Λ and a ∈ Γ , if (γ, h) with γ ∈ {+, 0,−} is in configuration
Dt of Π ′, then the number of copies of the objects of the form (a, h′)
with h′ any descendant of h in µ, or h itself, is equal to the number of
copies of a contained in the membrane substructure rooted in h in Cf(t),
and h has the charge γ. If (•, h) is in Dt, then h does not appear in Cf(t)
(having been dissolved before).

We prove this property by induction on t. The case t = 0 clearly holds, by the
definition of the encoding function: E(Cf(0)) = E(C0) = D0, as f(0) = |∅|.

Now suppose P (t) holds for some t < n. If rt+1 is a rule of type (2) then for
each object a ∈ Γ , the only change in the objects with a as the first component is
when the second component h is the label of a membrane that has been dissolved
inΠ and the objects retain a as the first component while the second one became
the label of the parent membrane of h in µ. Furthermore, no symbol in the form
(γ, h), where γ is a charge, is rewritten to a different symbol. Since rt+1 is of
type (2), we have f(t + 1) = f(t) hence Cf(t+1) = Cf(t), and property P (t + 1)
holds.

On the other hand, if rt+1 is not of type (2), then f(t + 1) = f(t) + 1 by
definition. Let sf(t)+1 = sf(t+1) be the rule corresponding to the cooperative
rule rt+1 as described above (an object evolution rule if rt+1 is of type (3), a
dissolution rule if rt+1 is of type (1), and so on). Observe that if rt+1 is applicable
in Dt, then sf(t)+1 is applicable in Cf(t) by induction hypothesis:

– if (γ, h) is in Dt then the membrane h has charge γ in Cf(t);
– if rt+1 is of type (1), (3), or (4) and uses an object (a, h) in Dt, then a copy

of a appears in membrane h in Cf(t);
– if rt+1 is of type (5) and uses an object (a, h) and (•, h) is in Dt, then the

object a appears in Cf(t) inside the membrane having the same label as the
lowest ancestor of h in the original membrane structure such that (γ, h) with
γ 6= • is in Dt.

The configuration Cf(t)+1 such that Cf(t) →sf(t)+1
Cf(t)+1, due to the semantics

of the corresponding rules applied byΠ andΠ ′, is such that the property P (t+1)
holds.

In particular, P (n) holds: configurations Dn and Cf(n) have the following
properties: the encoding E(Cf(n)) is contained in Dn and all other objects not
contained in E(Cf(n)) are in the form (•, h), where h is the label of a membrane
that has been dissolved during the computation. Notice that Cf(n) is a halting
configuration, since otherwise any rule applicable from it could be simulated
from Dn as in statement (i). Furthermore, if an object (•, h) is in Dn then no
object in form (a, h) with a ∈ Γ exists, otherwise further rules of type (2) could

be applied, contradicting the hypothesis that Dn is a halting configuration. For
all membranes h in Cf(n) and for all objects a ∈ Γ , the number of copies of a
that are inside the membrane h in Cf(n) is equal to the number of objects in the
form (a, h) in Dn, and statement (ii) follows.

Finally, let us consider a non-halting computation of Π. Each time a com-
putation of Π can be extended by one step by applying a rule, that rule can be
simulated by Π ′ using the same argument employed to prove statement (i), thus
yielding a non-halting computation of Π ′. Vice versa, in a non-halting computa-
tion of Π ′ it is never the case that infinitely many rules of type (2) are applied
sequentially, as only finitely many objects exist at any given time, and eventually
they are rewritten to have the form (a, h) without also having the object (•, h).
As soon as a rule of type (1), (3), (4), or (5) is applied, the corresponding rule
can also be applied by Π, thus yielding a non-halting computation. ut

5 Simulation with Petri Nets

The single-membrane transition P systems described in the last section can be
simulated by Petri nets in a straightforward way. The idea of using Petri nets as
a device for the simulation is originally due to [3].

Proposition 3. Let Π = (Γ,w,R) be a single-membrane sequential transition
P system. Then, there exists a Petri net N , having Γ among its places, such that
C → C′ is a computation step of Π if and only if M → M ′ is a computation step
of N , where M(a) is the number of instances of a in C.

Proof. The set of places of N is defined as Γ ∪ {lock}, where lock is a place
always containing a single token that is employed in order to ensure the firing of
at most one transition per step. For each cooperative rule v1 · · · vn → u1 · · ·um
the net has a transition defined as follows:

v1 v2 vn. . .

. . .u1 u2 um

lock r

Notice that the output places need not be distinct, as the multiset in the left
hand side may contain multiple occurrences of the same symbol; in that case,

a weighted arc is used. The output places need not be distinct from the input
places either; in that case, the net contains a corresponding loop.

The initial marking M0 of N is given by M0(a) = |w|a, for all a ∈ Γ , where
|w|a is the multiplicity of a in w.

Notice that a transition r in N is enabled exactly when the corresponding
rule r ∈ R is applicable, producing a transition M →r M

′ corresponding to a
computation step C →r C′ of Π as required. In every moment the number of
tokens in a place is equal to the multiplicity of the corresponding object in the
configuration of Π. ut

By combining Propositions 1, 2, and 3, we can finally prove the following
theorem.

Theorem 1. For every asynchronous P system with active membranes Π using
evolution, communication, and dissolution rules, there exists a Petri net N such
that (i) every halting configuration of Π corresponds to a halting configuration
of N and vice versa (under the encoding of Propositions 2 and 3), and (ii) every
non-halting computation of Π corresponds to a non-halting computation of N
and vice versa. ut

Notice that, given the strict correspondence of computations and their halt-
ing configurations (if any) between the two devices, this result holds both for
P systems computing functions over multisets/Parikh vectors and those recog-
nising or generating families of multisets/Parikh vectors, since the only difference
between these computing modes is the initial configuration and the acceptance
condition; these are translated directly into the simulating Petri net.

6 Conclusions

We have proved that asynchronous P systems with active membranes (without
division rules) can be flattened and simulated by single-membrane transition
P systems using cooperative rules. These systems can, in turn, be easily sim-
ulated by place/transition Petri nets, and hence are not computationally uni-
versal. In order to achieve this result, we exploited the equivalence between the
asynchronous and the sequential parallelism policies for divisionless P systems
with active membranes.

The conjectured equivalence of asynchronous P systems with active mem-
branes and Petri nets does not seem to follow immediately from our result and
the previous simulation of partially blind register machines by means of asyn-
chronous P systems with active membranes [7]. Indeed, an explicit signalling
(putting a token into a specified place) instead of accepting by halting seems to be
required in order to simulate Petri nets with partially blind register machines [8].
Directly simulating Petri nets with asynchronous P systems with active mem-
branes is also nontrivial, since transitions provide a stronger synchronisation
mechanism than the limited context-sensitivity of the rules of a P system with
active membranes. This equivalence is thus left as an open problem.

Acknowledgements

We would like to thank Luca Bernardinello for his advice on the theory of Petri
nets. We would also like to thank the anonymous reviewers for pointing out
relevant literature that allowed a simplification of the original construction.

This research was partially funded by Lombardy Region under project NEDD
and by the French National Research Agency project EMC (ANR-09-BLAN-
0164).

References

1. Agrigoroaiei, O., Ciobanu, G.: Flattening the transition P systems with dissolution.
In: Conference on Membrane Computing, CMC 11. LNCS, vol. 6501, pp. 53–64.
Springer (2011)

2. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoretical
Computer Science 147, 117–136 (1995)

3. Dal Zilio, S., Formenti, E.: On the dynamics of PB systems: A Petri net view. In:
Workshop on Membrane Computing, WMC3. pp. 153–167. LNCS, Springer (2004)

4. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G.
(eds.) Lectures on Petri nets I: Basic models, Advances in Petri Nets, vol. 1491,
pp. 122–173. Springer (1998)

5. Freund, R.: Asynchronous P systems and P systems working in the sequential
mode. In: Workshop on Membrane Computing, WMC4. LNCS, vol. 3365, pp. 36–
62. Springer (2005)

6. Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Work-
shop on Membrane Computing, WMC8. LNCS, vol. 4860, pp. 271–284. Springer
(2007)

7. Frisco, P., Govan, G., Leporati, A.: Asynchronous P systems with active mem-
branes. Theoretical Computer Science 429, 74–86 (2012)

8. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science 7, 311–324 (1978)

9. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000)

10. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

11. Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall (1981)

